Values of Gaussian Hypergeometric Series
نویسندگان
چکیده
Let p be prime and let GF (p) be the finite field with p elements. In this note we investigate the arithmetic properties of the Gaussian hypergeometric functions 2F1(x) =2 F1 „ φ, φ | x « and 3F2(x) =3 F2 „ φ, φ, φ , | x « where φ and respectively are the quadratic and trivial characters of GF (p). For all but finitely many rational numbers x = λ, there exist two elliptic curves 2E1(λ) and 3E2(λ) for which these values are expressed in terms of the trace of the Frobenius endomorphism. We obtain bounds and congruence properties for these values. We also show, using a theorem of Elkies, that there are infinitely many primes p for which 2F1(λ) is zero; however if λ 6= −1, 0, 1 2 or 2, then the set of such primes has density zero. In contrast, if λ 6= 0 or 1, then there are only finitely many primes p for which 3F2(λ) = 0. Greene and Stanton proved a conjecture of Evans on the value of a certain character sum which from this point of view follows from the fact that 3E2(8) is an elliptic curve with complex multiplication. We completely classify all such CM curves and give their corresponding character sums in the sense of Evans using special Jacobsthal sums. As a consequence of this classification, we obtain new proofs of congruences for generalized Apéry numbers, as well as a few new ones, and we answer a question of Koike by evaluating 3F2(4) over every GF (p).
منابع مشابه
3f2 Hypergeometric Series and Periods of Elliptic Curves
We express the real period of a family of elliptic curves in terms of classical hypergeometric series. This expression is analogous to a result of Ono which relates the trace of Frobenius of the same family of elliptic curves to a Gaussian hypergeometric series. This analogy provides further evidence of the interplay between classical and Gaussian hypergeometric series.
متن کاملHypergeometric Series and Periods of Elliptic Curves
In [7], Greene introduced the notion of general hypergeometric series over finite fields or Gaussian hypergeometric series, which are analogous to classical hypergeometric series. The motivation for his work was to develop the area of character sums and their evaluations through parallels with the theory of hypergeometric functions. The basis for this parallel was the analogy between Gauss sums...
متن کاملPolynomial series expansions for confluent and Gaussian hypergeometric functions
Based on the Hadamard product of power series, polynomial series expansions for confluent hypergeometric functions M(a, c; ·) and for Gaussian hypergeometric functions F (a, b; c; ·) are introduced and studied. It turns out that the partial sums provide an interesting alternative for the numerical evaluation of the functions M(a, c; ·) and F (a, b; c; ·), in particular, if the parameters are al...
متن کاملGaussian Hypergeometric Series and Combinatorial Congruences
In a recent paper [A-O], the author and K. Ono study the “Gaussian” hypergeometric series 4F3(1)p over the finite field Fp. They describe relationships between values of these series, Fourier coefficients of modular forms, and the arithmetic of a certain algebraic variety. These relationships, together with tools from p-adic analysis and some unexpected combinatorial identities, lead to the pro...
متن کاملConvexity of the Zero-balanced Gaussian Hypergeometric Functions with Respect to Hölder Means
In this note we investigate the convexity of zero-balanced Gaussian hypergeometric functions and general power series with respect to Hölder means.
متن کاملA Subclass of Analytic Functions Associated with Hypergeometric Functions
In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.
متن کامل